Overclock.net › Forums › Graphics Cards › NVIDIA › [Official] Nvidia GeForce GTX TITAN Owners' club
New Posts  All Forums:Forum Nav:

[Official] Nvidia GeForce GTX TITAN Owners' club - Page 2522

post #25211 of 25218
Quote:
Originally Posted by booya View Post

And what about the first test in 3DMark11 at Performance level? I saw 96% (almost 500W?)

In DS3 I saw up to 85%, so it can be more than 400W. And in Saints Row IV only 50% (250W). Also in DS3 I saw a GPU temp of 14C higher than water temp. It's pretty high.

If I'm remembering correctly it is TDP (thermal design power) not actual power consumption. It correlates with actual power consumption but is nothing but the amount of heat dissipation required to be expelled by the cooling solution.

What is TDP?What is TDP?
Force1
(24 items)
 
Supa Troopa
(27 items)
 
CPUCPUMotherboardGraphics
Xeon x5679 Xeon x5679 EVGA SR-2 Classified 3-Way SLi GTX Titan 
RAMHard DriveHard DriveHard Drive
Force1 AVEXIR Green/White OCZ Vertex 4 Samsung 840 Pro Raid 0 WD Black Raid 0 
Optical DriveCoolingCoolingCooling
Slim DVD-RW XPSC Raystorm Full Copper CPU Block XPSC Raystorm Full Copper CPU Block MIPS SR-2 Blocks 
CoolingCoolingCoolingOS
swiftech mcp35x2 Watercool MO-RA3 420 Core Radiator Copper Tubing Win 7 Ult x64 
MonitorMonitorMonitorKeyboard
AOC 22" AOC 22" AOC 22" Razer Blackwidow Ultimate 
PowerCaseMouseAudio
Dual Silverstone ST1500 Watt PSU's Custom Lanli PC-7077 with inverted SR-2 Mobo Tray Logitech G9 Integrated Optical 
CPUMotherboardGraphicsGraphics
Intel Xeon x5650 EVGA x58 Classified EVGA GTX 780 Classified Hydro Copper EVGA GTX 480 
RAMHard DriveHard DriveHard Drive
G-Skill Ripjaws WD Caviar WD Caviar Black OCZ Vertex 4 
Optical DriveCoolingCoolingCooling
Pioneer Bluray RW EK HF Gold CPU Block GTS Stealth 280 Rad Koolance PMP400 pump 
CoolingCoolingCoolingCooling
Lamptron FC5 Fan Controller Auquacomputer Auquatube Reservoir Enzotech Chipset Block SR1 240 Rad 
OSMonitorMonitorMonitor
Windows 7 Ultimate 64bit AOC e2243Fwk AOC e2243Fwk AOC e2243Fwk 
KeyboardPowerCaseMouse
Razor Blackwidow Ultimate PC Power & Cooling MKIII 1200W Silentpower Coolermaster Storm Trooper Logitech G9x 
AudioAudioOther
Soundblaster X-Fi Dell Altec Lansing 5.1 NVIDIA Shield 
  hide details  
Reply
Force1
(24 items)
 
Supa Troopa
(27 items)
 
CPUCPUMotherboardGraphics
Xeon x5679 Xeon x5679 EVGA SR-2 Classified 3-Way SLi GTX Titan 
RAMHard DriveHard DriveHard Drive
Force1 AVEXIR Green/White OCZ Vertex 4 Samsung 840 Pro Raid 0 WD Black Raid 0 
Optical DriveCoolingCoolingCooling
Slim DVD-RW XPSC Raystorm Full Copper CPU Block XPSC Raystorm Full Copper CPU Block MIPS SR-2 Blocks 
CoolingCoolingCoolingOS
swiftech mcp35x2 Watercool MO-RA3 420 Core Radiator Copper Tubing Win 7 Ult x64 
MonitorMonitorMonitorKeyboard
AOC 22" AOC 22" AOC 22" Razer Blackwidow Ultimate 
PowerCaseMouseAudio
Dual Silverstone ST1500 Watt PSU's Custom Lanli PC-7077 with inverted SR-2 Mobo Tray Logitech G9 Integrated Optical 
CPUMotherboardGraphicsGraphics
Intel Xeon x5650 EVGA x58 Classified EVGA GTX 780 Classified Hydro Copper EVGA GTX 480 
RAMHard DriveHard DriveHard Drive
G-Skill Ripjaws WD Caviar WD Caviar Black OCZ Vertex 4 
Optical DriveCoolingCoolingCooling
Pioneer Bluray RW EK HF Gold CPU Block GTS Stealth 280 Rad Koolance PMP400 pump 
CoolingCoolingCoolingCooling
Lamptron FC5 Fan Controller Auquacomputer Auquatube Reservoir Enzotech Chipset Block SR1 240 Rad 
OSMonitorMonitorMonitor
Windows 7 Ultimate 64bit AOC e2243Fwk AOC e2243Fwk AOC e2243Fwk 
KeyboardPowerCaseMouse
Razor Blackwidow Ultimate PC Power & Cooling MKIII 1200W Silentpower Coolermaster Storm Trooper Logitech G9x 
AudioAudioOther
Soundblaster X-Fi Dell Altec Lansing 5.1 NVIDIA Shield 
  hide details  
Reply
post #25212 of 25218
Quote:
Originally Posted by booya View Post

And what about the first test in 3DMark11 at Performance level? I saw 96% (almost 500W?)
In DS3 I saw up to 85%, so it can be more than 400W. And in Saints Row IV only 50% (250W). Also in DS3 I saw a GPU temp of 14C higher than water temp. It's pretty high.



If you don't want to kill the card why are you tinkering with your bios then? thinking.gif
You set 500W somewhere in the bios with KBT, how do you how what the base power is? How can you know that the value you saw, the 85% is based on the 500W?
There are at least 5 different places in the bios to set the power limit, KBT only shows you 2 of them and one of them has to change in accordance to the other and still... wink.gif

Your Titan VRM's power output decoupling and capacitance banks are:

6 Phase VRM´s (CORE) 60A each = 360A

DC-DC = I(A) × V(V) = P(W) <=> 360A x 1.6v = 576W Theoretical MAX Wattage for the core

Plus 2 Phases for the memory and the rest of the card!

@ 1.40v = 504W
@ 1.45v = 522W


My system is in my SIG and the only difference was the CPU@4.8Ghz@1,30v! Using triple monitor 3240 x 1920@120hz SLI TITANS W/ Skyn3t Rev2 bios
and memory at stock 6000mhz!

1306mhz / 1,37v / power draw 124% / load 99% 372W*
1333mhz / 1.37v / power draw 134% / load 99% 402W*
1359mhz / 1.37v / power draw 139% / load 99% 417W*
1385mhz / 1.37v / power draw 145% / load 99% 435W*
1400mhz / 1.39v / power draw 155% / load 99% 465W*
*One card only

Power was being drawn from the wall ranging from 850W - 1250W!

Max i tested was 540W for each card at over 1,5V, that's pretty close to 360A!

Read my articles about it:

Warning: Spoiler! (Click to show)
"You can always choose with the slider what ever power target your card will have: Min 300W - Max 600W, my advice has always been to leave PT at default 300W = 100% and only increase it if you see stutters or frame drops!
As soon as you increase the slider and your card is power hungry, the voltage will allow more current into the card (THE AMOUNT ALWAYS DEPENDING ON THE SLIDER) and usually with stock air coolers (ACX as well) that are not capable of handling more than 350W of continued heat but to a much lesser extent a split second heat spike in the mosfets (VRM's)! on top of that i see lots of people using kombustor, mining, oc scanner, occt etc without knowing exactly how those programs should be run,( If anyone interested in mining with 780Ti, PM Gordan for the safest settings) loading the card to an extreme generating more heat that the cooler can handle!



In RED the Power Mosfets (Actually DrMos Modules for High current DC-DC conversion) for core and Memory (U8-U13 = core, U98/U99 Memory)
(The problem with Mosfets is their tiny size, they generate huge amounts of heat and only have a very small size making it very difficult to dissipate all that heat effectively, if there is a heat spike, even with LN2 they just "blow"...)
CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), quality = 90

In Yellow the Inductors (Current) [R22] for the core and [R33] for the memory

In BLUE the Capacitors (Voltage)
CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), quality = 90
CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), quality = 90

(An capacitor and inductor are similar in the way that a capacitor resists a change of a voltage and an inductor resists a change in current. The way how 'strong' they can resist depends on their value.)

In GREEN more Mosfets (4) and the NCP4206 Voltage controller 6 Phases

CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), quality = 90
CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), quality = 90

Unseen in the pic are: Memory voltage controller and the monitoring chip INA3221




Now:

ON AIR COOLING (STOCK COOLER, ACX, COOLER WITH LESS DISSIPATION THAN 350W

DON'T GO OVER:

With newer bios revisions: 300W x 120% PT = 360W
With older bios revisions: 330W x 110% PT= 363W


WATERCOOLING:

ANY BIOS REVISION: be extremely careful with anything over 450W!"

Warning: Spoiler! (Click to show)
The PT is the increase of TDP (thermal design power) which is determined by the chips maker (GK110 =250W) but this is not a fixed value, refers to the maximum amount of power the cooling system, in this case a chip, is required to dissipate. The TDP is typically not the most power the chip could ever draw, but the maximum power that it would draw when running "real applications". This ensures the chip will be able to handle essentially all applications without exceeding its thermal envelope, or requiring a cooling system for the maximum theoretical power.
"TDP is meant to be the wattage of the processor at load. I say "wattage" because it is unclear if this is meant to correspond most immediately to how much power is consumed in watts, or how much heat is produced in watts, but as near as I can tell the TDP is pretty much meant to indicate both" GL



(where C is capacitance, f is frequency and V is voltage)

Now, you dont have to make complicated calculus or anything like that because you have this chip here:



It monitors real-time voltage and power draw and its where AB/PrecisionX gets its hardware monitor readings from! wink.gif

Stock bios come with 250W TDP (AKA PT) so when its at 100% you will have 250W of power draw, if you increase it to the max stock 106% youll get: 250x106%=265W
The same is with modded 300/400/500W bios what you see in AB or precisionX is the percentage above what you set!
Ex: with a 500W bios (Slider set to maximum of course) you see 60% usage, this equals to: 500x60%=300W
YOU CAN DIRECTLY CONTROL TDP WITH THE SLIDER! thumb.gif

Now, why has AB a 300% slider while PrecisionX uses 200% for the same bios with the same PT?
Well, AB and precision have different interfaces so the readings are different for the same thing, just keep in mind the base TDP value and make your calculations from there
It doesnt matter what the % slider is in any program, just increase it if you having stutters or frame drops and when making calculations always make them from the base TDP with my formula:

aW x b% = cW (a= bios base TDP, b= OSD TDP, c= aproximate power draw)


Warning: Spoiler! (Click to show)
"...Voltage is just is the electrical potential for a circuit to do work, Current is the flow of electric charge and wattage is the rate at which energy is transferred by an electrical circuit. Typically wattage is measured by multiplying Amperage by Voltage! V * I = W (“I” is the variable for current, or amperage, in electronics and physics. It stands for “Impetus”.) wink.gif
When you set a higher power limit, you are allowing for more amperage to be drawn, but it doesnt mean ITS drawing that amperage as its just a upper limit you set with the slider!
It depends on the load the card has from the software its running! The more harsher it is the more power it draws, voltage only will allow more amperage to flow.
Conductor materials tend to increase their resistivity with an increase in temperature!
The reasons for these changes in resistivity can be explained by considering the flow of current through the material. The flow of current is actually the movement of electrons from one atom to another under the influence of an electric field. Electrons are very small negatively charged particles and will be repelled by a negative electric charge and attracted by a positive electric charge. Therefore if an electric potential is applied across a conductor (positive at one end, negative at the other) electrons will "migrate" from atom to atom towards the positive terminal.
Only some electrons are free to migrate however. Others within each atom are held so tightly to their particular atom that even an electric field will not dislodge them. The current flowing in the material is therefore due to the movement of "free electrons" and the number of free electrons within any material compared with those tightly bound to their atoms is what governs whether a material is a good conductor (many free electrons) or a good insulator (hardly any free electrons).
The effect of heat on the atomic structure of a material is to make the atoms vibrate, and the higher the temperature the more violently the atoms vibrate.
In a conductor, which already has a large number of free electrons flowing through it, the vibration of the atoms causes many collisions between the free electrons and the captive electrons. Each collision uses up some energy from the free electron and is the basic cause of resistance. The more the atoms jostle around in the material the more collisions are caused and hence the greater the resistance to current flow.
So to sum it up, we want lower temperatures which lead to lower electrical resistance, hence having less heat produced as waste and more power to our Titans/780´s cores to OC higher!
HEAT KILLS!
Exactly what happens depends on how excess the power is. It may be a sustained cooking. In this case, the MOSFET gets hot enough to literally unsolder itself. Much of the MOSFET heating at high currents is in the leads - which can quite easily unsolder themselves without the MOSFET failing! If the heat is generated in the chip, then it will get hot - but its maximum temperature is usually not silicon-restricted, but restricted by the fabrication. The silicon chip is bonded to the substrate by soft solder and it is quite easy to melt this and have it ooze between the epoxy and the metal of the body, forming solder droplets! Excess heat leads to short circuit! Usually, a MOSFET will fail short first. This is because excessive heat will, by diffusion, mix the dopants enough to create a good conductor instead of the p-n or n-p barriers that were there originally. Often, the gate oxide will be taken into the diffusion, too, causing a short between all three terminals.
Only if the short circuit current after this first mode of failure is high enough to blow the bond wires or the entire transistor, there is an open circuit.
The lower the temperature the better! My advice is always go water, that way your VRM's are roughly the same temperature as the core, max VRM's operating temperature is 85C (voltage controller, caps etc) on some parts and others( mosfets) 125C (Absolute MAX), so, hitting 80C on the core means that other VRM components are above spec temp and others and below!
Rule of the thumb in semi-conductors is 10C less doubles the elements life, also leakage current increases exponentially (leakage current doubles for every 8 to 10 °C increase in temperature). This is a very good reason to try to keep the operating temperature as low as possible! wink.gif"



Cheers and be careful

Occamrazor
S.S.
(15 items)
 
  
CPUMotherboardGraphicsGraphics
I5-3570K@5.0Ghz@1,4v ASUS MAXIMUS V GENE ASUS GTX Titan EK XXL+Backplate@1400mhz@1.40v ASUS GTX Titan EK XXL+Backplate@1400mhz@1.40v 
RAMHard DriveHard DriveCooling
8GB GSKILL RIPJAW X DDR3 1866MHZ (9-10-9-24) (2... OCZ Agility 3 120GB Western Digital 2TB  Homemade WC (everything on water) ;) 
OSMonitorMonitorMonitor
W8.1x64 ASUS VG278HE ASUS VG278HE ASUS VG278HE 
PowerCaseAudio
Silverstone Strider 1200W Corsair 500R THX 500W 5.1 
  hide details  
Reply
S.S.
(15 items)
 
  
CPUMotherboardGraphicsGraphics
I5-3570K@5.0Ghz@1,4v ASUS MAXIMUS V GENE ASUS GTX Titan EK XXL+Backplate@1400mhz@1.40v ASUS GTX Titan EK XXL+Backplate@1400mhz@1.40v 
RAMHard DriveHard DriveCooling
8GB GSKILL RIPJAW X DDR3 1866MHZ (9-10-9-24) (2... OCZ Agility 3 120GB Western Digital 2TB  Homemade WC (everything on water) ;) 
OSMonitorMonitorMonitor
W8.1x64 ASUS VG278HE ASUS VG278HE ASUS VG278HE 
PowerCaseAudio
Silverstone Strider 1200W Corsair 500R THX 500W 5.1 
  hide details  
Reply
post #25213 of 25218
Hey @Jpmboy, just got the blocks safe and sound and looking good. Thanks a lot mate. thumb.gif

Gabriel
Wishabiggercase
(17 items)
 
  
CPUMotherboardGraphicsGraphics
core i7 3930k asus rampage IV extreme titan sc EVGA with komodo block titan EVGA hydro copper 
RAMHard DriveHard DriveCooling
corsair dominator 3 x Samsung 840 pro 3x Seagate 3 tb 7200 rpm mechanical liquid custom 
OSMonitorKeyboardPower
win 7 64 bytes ultimate samsumg 24" logitech illuminated keyboard corsair 1200 axi 
CaseMouseMouse PadAudio
Fractal design xl r2 steelseries kinzu razer onboard + sennheiser hd 280 pro 
Other
gentle typhoons (ap14 e ap15 and deafult 140 mm... 
  hide details  
Reply
Wishabiggercase
(17 items)
 
  
CPUMotherboardGraphicsGraphics
core i7 3930k asus rampage IV extreme titan sc EVGA with komodo block titan EVGA hydro copper 
RAMHard DriveHard DriveCooling
corsair dominator 3 x Samsung 840 pro 3x Seagate 3 tb 7200 rpm mechanical liquid custom 
OSMonitorKeyboardPower
win 7 64 bytes ultimate samsumg 24" logitech illuminated keyboard corsair 1200 axi 
CaseMouseMouse PadAudio
Fractal design xl r2 steelseries kinzu razer onboard + sennheiser hd 280 pro 
Other
gentle typhoons (ap14 e ap15 and deafult 140 mm... 
  hide details  
Reply
post #25214 of 25218
Quote:
Originally Posted by OccamRazor View Post

If you don't want to kill the card why are you tinkering with your bios then? thinking.gifWarning: Spoiler! (Click to show)
You set 500W somewhere in the bios with KBT, how do you how what the base power is? How can you know that the value you saw, the 85% is based on the 500W?
There are at least 5 different places in the bios to set the power limit, KBT only shows you 2 of them and one of them has to change in accordance to the other and still... wink.gif

Your Titan VRM's power output decoupling and capacitance banks are:

6 Phase VRM´s (CORE) 60A each = 360A

DC-DC = I(A) × V(V) = P(W) <=> 360A x 1.6v = 576W Theoretical MAX Wattage for the core

Plus 2 Phases for the memory and the rest of the card!

@ 1.40v = 504W
@ 1.45v = 522W


My system is in my SIG and the only difference was the CPU@4.8Ghz@1,30v! Using triple monitor 3240 x 1920@120hz SLI TITANS W/ Skyn3t Rev2 bios
and memory at stock 6000mhz!

1306mhz / 1,37v / power draw 124% / load 99% 372W*
1333mhz / 1.37v / power draw 134% / load 99% 402W*
1359mhz / 1.37v / power draw 139% / load 99% 417W*
1385mhz / 1.37v / power draw 145% / load 99% 435W*
1400mhz / 1.39v / power draw 155% / load 99% 465W*
*One card only

Power was being drawn from the wall ranging from 850W - 1250W!

Max i tested was 540W for each card at over 1,5V, that's pretty close to 360A!

Read my articles about it:

Warning: Spoiler! (Click to show)
"You can always choose with the slider what ever power target your card will have: Min 300W - Max 600W, my advice has always been to leave PT at default 300W = 100% and only increase it if you see stutters or frame drops!
As soon as you increase the slider and your card is power hungry, the voltage will allow more current into the card (THE AMOUNT ALWAYS DEPENDING ON THE SLIDER) and usually with stock air coolers (ACX as well) that are not capable of handling more than 350W of continued heat but to a much lesser extent a split second heat spike in the mosfets (VRM's)! on top of that i see lots of people using kombustor, mining, oc scanner, occt etc without knowing exactly how those programs should be run,( If anyone interested in mining with 780Ti, PM Gordan for the safest settings) loading the card to an extreme generating more heat that the cooler can handle!



In RED the Power Mosfets (Actually DrMos Modules for High current DC-DC conversion) for core and Memory (U8-U13 = core, U98/U99 Memory)
(The problem with Mosfets is their tiny size, they generate huge amounts of heat and only have a very small size making it very difficult to dissipate all that heat effectively, if there is a heat spike, even with LN2 they just "blow"...)
CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), quality = 90

In Yellow the Inductors (Current) [R22] for the core and [R33] for the memory

In BLUE the Capacitors (Voltage)
CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), quality = 90
CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), quality = 90

(An capacitor and inductor are similar in the way that a capacitor resists a change of a voltage and an inductor resists a change in current. The way how 'strong' they can resist depends on their value.)

In GREEN more Mosfets (4) and the NCP4206 Voltage controller 6 Phases

CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), quality = 90
CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), quality = 90

Unseen in the pic are: Memory voltage controller and the monitoring chip INA3221




Now:

ON AIR COOLING (STOCK COOLER, ACX, COOLER WITH LESS DISSIPATION THAN 350W

DON'T GO OVER:

With newer bios revisions: 300W x 120% PT = 360W
With older bios revisions: 330W x 110% PT= 363W


WATERCOOLING:

ANY BIOS REVISION: be extremely careful with anything over 450W!"

Warning: Spoiler! (Click to show)
The PT is the increase of TDP (thermal design power) which is determined by the chips maker (GK110 =250W) but this is not a fixed value, refers to the maximum amount of power the cooling system, in this case a chip, is required to dissipate. The TDP is typically not the most power the chip could ever draw, but the maximum power that it would draw when running "real applications". This ensures the chip will be able to handle essentially all applications without exceeding its thermal envelope, or requiring a cooling system for the maximum theoretical power.
"TDP is meant to be the wattage of the processor at load. I say "wattage" because it is unclear if this is meant to correspond most immediately to how much power is consumed in watts, or how much heat is produced in watts, but as near as I can tell the TDP is pretty much meant to indicate both" GL



(where C is capacitance, f is frequency and V is voltage)

Now, you dont have to make complicated calculus or anything like that because you have this chip here:



It monitors real-time voltage and power draw and its where AB/PrecisionX gets its hardware monitor readings from! wink.gif

Stock bios come with 250W TDP (AKA PT) so when its at 100% you will have 250W of power draw, if you increase it to the max stock 106% youll get: 250x106%=265W
The same is with modded 300/400/500W bios what you see in AB or precisionX is the percentage above what you set!
Ex: with a 500W bios (Slider set to maximum of course) you see 60% usage, this equals to: 500x60%=300W
YOU CAN DIRECTLY CONTROL TDP WITH THE SLIDER! thumb.gif

Now, why has AB a 300% slider while PrecisionX uses 200% for the same bios with the same PT?
Well, AB and precision have different interfaces so the readings are different for the same thing, just keep in mind the base TDP value and make your calculations from there
It doesnt matter what the % slider is in any program, just increase it if you having stutters or frame drops and when making calculations always make them from the base TDP with my formula:

aW x b% = cW (a= bios base TDP, b= OSD TDP, c= aproximate power draw)


Warning: Spoiler! (Click to show)
"...Voltage is just is the electrical potential for a circuit to do work, Current is the flow of electric charge and wattage is the rate at which energy is transferred by an electrical circuit. Typically wattage is measured by multiplying Amperage by Voltage! V * I = W (“I” is the variable for current, or amperage, in electronics and physics. It stands for “Impetus”.) wink.gif
When you set a higher power limit, you are allowing for more amperage to be drawn, but it doesnt mean ITS drawing that amperage as its just a upper limit you set with the slider!
It depends on the load the card has from the software its running! The more harsher it is the more power it draws, voltage only will allow more amperage to flow.
Conductor materials tend to increase their resistivity with an increase in temperature!
The reasons for these changes in resistivity can be explained by considering the flow of current through the material. The flow of current is actually the movement of electrons from one atom to another under the influence of an electric field. Electrons are very small negatively charged particles and will be repelled by a negative electric charge and attracted by a positive electric charge. Therefore if an electric potential is applied across a conductor (positive at one end, negative at the other) electrons will "migrate" from atom to atom towards the positive terminal.
Only some electrons are free to migrate however. Others within each atom are held so tightly to their particular atom that even an electric field will not dislodge them. The current flowing in the material is therefore due to the movement of "free electrons" and the number of free electrons within any material compared with those tightly bound to their atoms is what governs whether a material is a good conductor (many free electrons) or a good insulator (hardly any free electrons).
The effect of heat on the atomic structure of a material is to make the atoms vibrate, and the higher the temperature the more violently the atoms vibrate.
In a conductor, which already has a large number of free electrons flowing through it, the vibration of the atoms causes many collisions between the free electrons and the captive electrons. Each collision uses up some energy from the free electron and is the basic cause of resistance. The more the atoms jostle around in the material the more collisions are caused and hence the greater the resistance to current flow.
So to sum it up, we want lower temperatures which lead to lower electrical resistance, hence having less heat produced as waste and more power to our Titans/780´s cores to OC higher!
HEAT KILLS!
Exactly what happens depends on how excess the power is. It may be a sustained cooking. In this case, the MOSFET gets hot enough to literally unsolder itself. Much of the MOSFET heating at high currents is in the leads - which can quite easily unsolder themselves without the MOSFET failing! If the heat is generated in the chip, then it will get hot - but its maximum temperature is usually not silicon-restricted, but restricted by the fabrication. The silicon chip is bonded to the substrate by soft solder and it is quite easy to melt this and have it ooze between the epoxy and the metal of the body, forming solder droplets! Excess heat leads to short circuit! Usually, a MOSFET will fail short first. This is because excessive heat will, by diffusion, mix the dopants enough to create a good conductor instead of the p-n or n-p barriers that were there originally. Often, the gate oxide will be taken into the diffusion, too, causing a short between all three terminals.
Only if the short circuit current after this first mode of failure is high enough to blow the bond wires or the entire transistor, there is an open circuit.
The lower the temperature the better! My advice is always go water, that way your VRM's are roughly the same temperature as the core, max VRM's operating temperature is 85C (voltage controller, caps etc) on some parts and others( mosfets) 125C (Absolute MAX), so, hitting 80C on the core means that other VRM components are above spec temp and others and below!
Rule of the thumb in semi-conductors is 10C less doubles the elements life, also leakage current increases exponentially (leakage current doubles for every 8 to 10 °C increase in temperature). This is a very good reason to try to keep the operating temperature as low as possible! wink.gif"



Cheers and be careful

Occamrazor

+1
Simplicity
(11 items)
 
Apotheosis
(10 items)
 
 
CPUMotherboardGraphicsRAM
4770k Asus Z87 Pro TBD Corsair Vengeance (2x8GB) DDR3 1600 RAM 
OSMonitorKeyboardPower
Windows 7 Pro Dell U2713HM Alienware TactX gaming Seasonic 850W Gold  
CaseMouse
Cooler Master HAF XB Alienware TactX premium mouse 
  hide details  
Reply
Simplicity
(11 items)
 
Apotheosis
(10 items)
 
 
CPUMotherboardGraphicsRAM
4770k Asus Z87 Pro TBD Corsair Vengeance (2x8GB) DDR3 1600 RAM 
OSMonitorKeyboardPower
Windows 7 Pro Dell U2713HM Alienware TactX gaming Seasonic 850W Gold  
CaseMouse
Cooler Master HAF XB Alienware TactX premium mouse 
  hide details  
Reply
post #25215 of 25218
Quote:
Originally Posted by OccamRazor View Post

If you don't want to kill the card why are you tinkering with your bios then? thinking.gif
You set 500W somewhere in the bios with KBT, how do you how what the base power is? How can you know that the value you saw, the 85% is based on the 500W?
There are at least 5 different places in the bios to set the power limit, KBT only shows you 2 of them and one of them has to change in accordance to the other and still... wink.gif

Your Titan VRM's power output decoupling and capacitance banks are:

6 Phase VRM´s (CORE) 60A each = 360A

DC-DC = I(A) × V(V) = P(W) <=> 360A x 1.6v = 576W Theoretical MAX Wattage for the core

Plus 2 Phases for the memory and the rest of the card!

@ 1.40v = 504W
@ 1.45v = 522W


My system is in my SIG and the only difference was the CPU@4.8Ghz@1,30v! Using triple monitor 3240 x 1920@120hz SLI TITANS W/ Skyn3t Rev2 bios
and memory at stock 6000mhz!

1306mhz / 1,37v / power draw 124% / load 99% 372W*
1333mhz / 1.37v / power draw 134% / load 99% 402W*
1359mhz / 1.37v / power draw 139% / load 99% 417W*
1385mhz / 1.37v / power draw 145% / load 99% 435W*
1400mhz / 1.39v / power draw 155% / load 99% 465W*
*One card only

Power was being drawn from the wall ranging from 850W - 1250W!

Max i tested was 540W for each card at over 1,5V, that's pretty close to 360A!

Read my articles about it:

Warning: Spoiler! (Click to show)
"You can always choose with the slider what ever power target your card will have: Min 300W - Max 600W, my advice has always been to leave PT at default 300W = 100% and only increase it if you see stutters or frame drops!
As soon as you increase the slider and your card is power hungry, the voltage will allow more current into the card (THE AMOUNT ALWAYS DEPENDING ON THE SLIDER) and usually with stock air coolers (ACX as well) that are not capable of handling more than 350W of continued heat but to a much lesser extent a split second heat spike in the mosfets (VRM's)! on top of that i see lots of people using kombustor, mining, oc scanner, occt etc without knowing exactly how those programs should be run,( If anyone interested in mining with 780Ti, PM Gordan for the safest settings) loading the card to an extreme generating more heat that the cooler can handle!



In RED the Power Mosfets (Actually DrMos Modules for High current DC-DC conversion) for core and Memory (U8-U13 = core, U98/U99 Memory)
(The problem with Mosfets is their tiny size, they generate huge amounts of heat and only have a very small size making it very difficult to dissipate all that heat effectively, if there is a heat spike, even with LN2 they just "blow"...)
CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), quality = 90

In Yellow the Inductors (Current) [R22] for the core and [R33] for the memory

In BLUE the Capacitors (Voltage)
CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), quality = 90
CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), quality = 90

(An capacitor and inductor are similar in the way that a capacitor resists a change of a voltage and an inductor resists a change in current. The way how 'strong' they can resist depends on their value.)

In GREEN more Mosfets (4) and the NCP4206 Voltage controller 6 Phases

CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), quality = 90
CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), quality = 90

Unseen in the pic are: Memory voltage controller and the monitoring chip INA3221




Now:

ON AIR COOLING (STOCK COOLER, ACX, COOLER WITH LESS DISSIPATION THAN 350W

DON'T GO OVER:

With newer bios revisions: 300W x 120% PT = 360W
With older bios revisions: 330W x 110% PT= 363W


WATERCOOLING:

ANY BIOS REVISION: be extremely careful with anything over 450W!"

Warning: Spoiler! (Click to show)
The PT is the increase of TDP (thermal design power) which is determined by the chips maker (GK110 =250W) but this is not a fixed value, refers to the maximum amount of power the cooling system, in this case a chip, is required to dissipate. The TDP is typically not the most power the chip could ever draw, but the maximum power that it would draw when running "real applications". This ensures the chip will be able to handle essentially all applications without exceeding its thermal envelope, or requiring a cooling system for the maximum theoretical power.
"TDP is meant to be the wattage of the processor at load. I say "wattage" because it is unclear if this is meant to correspond most immediately to how much power is consumed in watts, or how much heat is produced in watts, but as near as I can tell the TDP is pretty much meant to indicate both" GL



(where C is capacitance, f is frequency and V is voltage)

Now, you dont have to make complicated calculus or anything like that because you have this chip here:



It monitors real-time voltage and power draw and its where AB/PrecisionX gets its hardware monitor readings from! wink.gif

Stock bios come with 250W TDP (AKA PT) so when its at 100% you will have 250W of power draw, if you increase it to the max stock 106% youll get: 250x106%=265W
The same is with modded 300/400/500W bios what you see in AB or precisionX is the percentage above what you set!
Ex: with a 500W bios (Slider set to maximum of course) you see 60% usage, this equals to: 500x60%=300W
YOU CAN DIRECTLY CONTROL TDP WITH THE SLIDER! thumb.gif

Now, why has AB a 300% slider while PrecisionX uses 200% for the same bios with the same PT?
Well, AB and precision have different interfaces so the readings are different for the same thing, just keep in mind the base TDP value and make your calculations from there
It doesnt matter what the % slider is in any program, just increase it if you having stutters or frame drops and when making calculations always make them from the base TDP with my formula:

aW x b% = cW (a= bios base TDP, b= OSD TDP, c= aproximate power draw)


Warning: Spoiler! (Click to show)
"...Voltage is just is the electrical potential for a circuit to do work, Current is the flow of electric charge and wattage is the rate at which energy is transferred by an electrical circuit. Typically wattage is measured by multiplying Amperage by Voltage! V * I = W (“I” is the variable for current, or amperage, in electronics and physics. It stands for “Impetus”.) wink.gif
When you set a higher power limit, you are allowing for more amperage to be drawn, but it doesnt mean ITS drawing that amperage as its just a upper limit you set with the slider!
It depends on the load the card has from the software its running! The more harsher it is the more power it draws, voltage only will allow more amperage to flow.
Conductor materials tend to increase their resistivity with an increase in temperature!
The reasons for these changes in resistivity can be explained by considering the flow of current through the material. The flow of current is actually the movement of electrons from one atom to another under the influence of an electric field. Electrons are very small negatively charged particles and will be repelled by a negative electric charge and attracted by a positive electric charge. Therefore if an electric potential is applied across a conductor (positive at one end, negative at the other) electrons will "migrate" from atom to atom towards the positive terminal.
Only some electrons are free to migrate however. Others within each atom are held so tightly to their particular atom that even an electric field will not dislodge them. The current flowing in the material is therefore due to the movement of "free electrons" and the number of free electrons within any material compared with those tightly bound to their atoms is what governs whether a material is a good conductor (many free electrons) or a good insulator (hardly any free electrons).
The effect of heat on the atomic structure of a material is to make the atoms vibrate, and the higher the temperature the more violently the atoms vibrate.
In a conductor, which already has a large number of free electrons flowing through it, the vibration of the atoms causes many collisions between the free electrons and the captive electrons. Each collision uses up some energy from the free electron and is the basic cause of resistance. The more the atoms jostle around in the material the more collisions are caused and hence the greater the resistance to current flow.
So to sum it up, we want lower temperatures which lead to lower electrical resistance, hence having less heat produced as waste and more power to our Titans/780´s cores to OC higher!
HEAT KILLS!
Exactly what happens depends on how excess the power is. It may be a sustained cooking. In this case, the MOSFET gets hot enough to literally unsolder itself. Much of the MOSFET heating at high currents is in the leads - which can quite easily unsolder themselves without the MOSFET failing! If the heat is generated in the chip, then it will get hot - but its maximum temperature is usually not silicon-restricted, but restricted by the fabrication. The silicon chip is bonded to the substrate by soft solder and it is quite easy to melt this and have it ooze between the epoxy and the metal of the body, forming solder droplets! Excess heat leads to short circuit! Usually, a MOSFET will fail short first. This is because excessive heat will, by diffusion, mix the dopants enough to create a good conductor instead of the p-n or n-p barriers that were there originally. Often, the gate oxide will be taken into the diffusion, too, causing a short between all three terminals.
Only if the short circuit current after this first mode of failure is high enough to blow the bond wires or the entire transistor, there is an open circuit.
The lower the temperature the better! My advice is always go water, that way your VRM's are roughly the same temperature as the core, max VRM's operating temperature is 85C (voltage controller, caps etc) on some parts and others( mosfets) 125C (Absolute MAX), so, hitting 80C on the core means that other VRM components are above spec temp and others and below!
Rule of the thumb in semi-conductors is 10C less doubles the elements life, also leakage current increases exponentially (leakage current doubles for every 8 to 10 °C increase in temperature). This is a very good reason to try to keep the operating temperature as low as possible! wink.gif"



Cheers and be careful

Occamrazor

Rep for that my friend!
post #25216 of 25218
Schooled wink.gif
post #25217 of 25218
Quote:
Originally Posted by V3teran View Post


Did this work for you mate?

It actually has not worked for me it still will not run the overlay at all. The old fix was disabling everything before starting the game then enabling it. Now if I enable it in the game it locks up and stops the overlay
post #25218 of 25218
Quote:
Originally Posted by dpoverlord View Post

It actually has not worked for me it still will not run the overlay at all. The old fix was disabling everything before starting the game then enabling it. Now if I enable it in the game it locks up and stops the overlay
Strange, ok try disabling Origin ingame, that should deffo do it.
New Posts  All Forums:Forum Nav:
  Return Home
  Back to Forum: NVIDIA
Overclock.net › Forums › Graphics Cards › NVIDIA › [Official] Nvidia GeForce GTX TITAN Owners' club