Overclock.net › Forums › AMD › AMD Motherboards › Problems after overclock
New Posts  All Forums:Forum Nav:

Problems after overclock - Page 4

post #31 of 36
So test with the stability with the following software:
http://www.softpedia.com/get/Others/.../Prime95.shtml Prime95
http://www.techpowerup.com/downloads/385/ Orthos
http://www.softpedia.com/get/Tweak/M.../MemTest.shtml Memtest
If you fail on any of the stability problems you will have to either lower fsb and vcore or buy a better cooling system. Or try changing the cpu:ram ratio to 1:1 in bios. If ur PC doesn't boot after an overclock you'll have to make a CMOS reset. Open your case an dfind jumpers on your motherboard. Just flick it push it back in and overclock again until you find a perfect overclock.
XXXUnknownXXX
(13 items)
 
  
CPUMotherboardGraphicsRAM
Intel Core 2 Duo E8400 Wolfdale 4.1 GHz DFI Lanparty DK P35 T2RS 2 x eVGA 8800 GTS GDDR3 512 MB in Nvidia SLI 2 x 2 GB OCZ Reaper HPC Edition DDR2 800 PC2-6400 
Hard DriveOptical DriveOSMonitor
4 x 150 GB Raptors (X) 10,000 RPM in Raid 0 + 1 Lite-On Black SATA Blu-Ray DVD ROM DH-4O1S-08 XP Professional 64-Bit/Vista Ultimate 64-Bit Acer Black 22" Widescreen LCD WSXGA (1680 x 1050) 
KeyboardPowerCaseMouse
Logitech G15 Gaming Keyboard Silverstone DA-1200-Watts Nvidia SLI Certified Cooler Master CM Stacker 830 Black ATX Full Tower Razer Diamondback Blue Gaming Mouse 
Mouse Pad
QPAD CT Black Gaming Mouse Pad 
  hide details  
Reply
XXXUnknownXXX
(13 items)
 
  
CPUMotherboardGraphicsRAM
Intel Core 2 Duo E8400 Wolfdale 4.1 GHz DFI Lanparty DK P35 T2RS 2 x eVGA 8800 GTS GDDR3 512 MB in Nvidia SLI 2 x 2 GB OCZ Reaper HPC Edition DDR2 800 PC2-6400 
Hard DriveOptical DriveOSMonitor
4 x 150 GB Raptors (X) 10,000 RPM in Raid 0 + 1 Lite-On Black SATA Blu-Ray DVD ROM DH-4O1S-08 XP Professional 64-Bit/Vista Ultimate 64-Bit Acer Black 22" Widescreen LCD WSXGA (1680 x 1050) 
KeyboardPowerCaseMouse
Logitech G15 Gaming Keyboard Silverstone DA-1200-Watts Nvidia SLI Certified Cooler Master CM Stacker 830 Black ATX Full Tower Razer Diamondback Blue Gaming Mouse 
Mouse Pad
QPAD CT Black Gaming Mouse Pad 
  hide details  
Reply
post #32 of 36
Thread Starter 
ok, I'll give that a try, I have lowered everything now hopefully it will be a little more stable, if not I will revert to defualt until I know more.

btw 555thz, what score do you get on 3dmark06?
Daedalus mkII
(15 items)
 
  
CPUMotherboardGraphicsRAM
i5-3570k @ 4.4ghz MSI Z77A-G43 EVGA GeForce GTX 770 Samsung Green 8GB DDR3 PC3-12800C11  
Hard DriveCoolingOSMonitor
Crucial 64GB M4 SSD 3 x Seagate Barracuda 500gb Prolimatech Megahalem CPU Cooler w/ x2 Tech Lab... Win7 Pro 64bit LG Flatron IPS234 
KeyboardPowerCaseMouse
Gigabyte Aivia Osmium Modular Gigabyte ODIN PRO 800W Lian Li PC-7FNWX Razer DeathAdder Respawn 3500 
Mouse Pad
Razer Sphex 
  hide details  
Reply
Daedalus mkII
(15 items)
 
  
CPUMotherboardGraphicsRAM
i5-3570k @ 4.4ghz MSI Z77A-G43 EVGA GeForce GTX 770 Samsung Green 8GB DDR3 PC3-12800C11  
Hard DriveCoolingOSMonitor
Crucial 64GB M4 SSD 3 x Seagate Barracuda 500gb Prolimatech Megahalem CPU Cooler w/ x2 Tech Lab... Win7 Pro 64bit LG Flatron IPS234 
KeyboardPowerCaseMouse
Gigabyte Aivia Osmium Modular Gigabyte ODIN PRO 800W Lian Li PC-7FNWX Razer DeathAdder Respawn 3500 
Mouse Pad
Razer Sphex 
  hide details  
Reply
post #33 of 36
My 3dmark score is something 20000+ still can't beat record=(
XXXUnknownXXX
(13 items)
 
  
CPUMotherboardGraphicsRAM
Intel Core 2 Duo E8400 Wolfdale 4.1 GHz DFI Lanparty DK P35 T2RS 2 x eVGA 8800 GTS GDDR3 512 MB in Nvidia SLI 2 x 2 GB OCZ Reaper HPC Edition DDR2 800 PC2-6400 
Hard DriveOptical DriveOSMonitor
4 x 150 GB Raptors (X) 10,000 RPM in Raid 0 + 1 Lite-On Black SATA Blu-Ray DVD ROM DH-4O1S-08 XP Professional 64-Bit/Vista Ultimate 64-Bit Acer Black 22" Widescreen LCD WSXGA (1680 x 1050) 
KeyboardPowerCaseMouse
Logitech G15 Gaming Keyboard Silverstone DA-1200-Watts Nvidia SLI Certified Cooler Master CM Stacker 830 Black ATX Full Tower Razer Diamondback Blue Gaming Mouse 
Mouse Pad
QPAD CT Black Gaming Mouse Pad 
  hide details  
Reply
XXXUnknownXXX
(13 items)
 
  
CPUMotherboardGraphicsRAM
Intel Core 2 Duo E8400 Wolfdale 4.1 GHz DFI Lanparty DK P35 T2RS 2 x eVGA 8800 GTS GDDR3 512 MB in Nvidia SLI 2 x 2 GB OCZ Reaper HPC Edition DDR2 800 PC2-6400 
Hard DriveOptical DriveOSMonitor
4 x 150 GB Raptors (X) 10,000 RPM in Raid 0 + 1 Lite-On Black SATA Blu-Ray DVD ROM DH-4O1S-08 XP Professional 64-Bit/Vista Ultimate 64-Bit Acer Black 22" Widescreen LCD WSXGA (1680 x 1050) 
KeyboardPowerCaseMouse
Logitech G15 Gaming Keyboard Silverstone DA-1200-Watts Nvidia SLI Certified Cooler Master CM Stacker 830 Black ATX Full Tower Razer Diamondback Blue Gaming Mouse 
Mouse Pad
QPAD CT Black Gaming Mouse Pad 
  hide details  
Reply
post #34 of 36
You can learn all basics of overclocking here:
Quote:
Originally Posted by unknown View Post
What is overclocking?

Firstly, the word overclocking is currently the most widely used word that does not appear in the English Dictionary. Secondly, overclocking means operating hardware (The CPU, RAM, Motherboard, and Video Card) above and beyond rated specifications. Rated specifications are the level to which a particular piece of hardware is expected to, has been tested to, and is warranted to perform. What this equates to in the real world is a certain price tag for a certain level of expected performance. Overclockers strive to determine not what hardware should do, but what they can do.

Overclocking is more of an Art than a Science. There is no combination of settings that will yield the best results for every system. Greater experience does make the overclocking process less cumbersome, but it is and always will be a trial and error process. Don’t be afraid to experiment, but always take things slow and be cognizant of the temperature and voltage limits.

Overclocking Basics (Particular to Intel Systems, though many of the concepts apply to AMD Systems as well)


1) Limitations – Each hardware component has physical limitations that, at a minimum, meet the rated (Stock) specifications. In the process of thoroughly overclocking a system, the actual limitations of various components will be found. In general, the CPU, RAM, and Motherboard will control the overclock, but other components such as the Power Supply and Cooling System will have a major impact on overclocking abilities. Depending on which of the three primary components (The CPU, RAM, and Motherboard) is the first to reach its limits, different steps can be taken to squeeze more out of the other components. Video Card overclocking is generally independent of overclocking the components previously listed.

2) Overlocking in the BIOS vs. Overclocking Software – Whenever the option exists, manipulating BIOS settings is the best way to accomplish overclocking. BIOS on value/low end motherboards and on proprietary systems such ass Dells and HPs generally have no to few options available for overclocking. On such systems, there is potential to overclock through software, though there is not a single piece of software to overclock every board.

3) CPU Front Side Bus vs. External Clock Speed – Intel overclocking is achieved via the FSB also called Front Side Bus or System Bus. Depending on your system, it can be noted as FSB, CPU Frequency, CPU Speed, Clock Speed, Clock Frequency, or something similar in the BIOS. Intel CPUs more recent than Pentiums 3s are “Quad Pumped”. This means that the External Clock Speed (The value shown in the BIOS) is ¼ the FSB (I.E External Clock Speed = FSB/4).

4) DDR Frequency vs. External Clock Speed – Conversely, DDR RAM transmits data on both sides if a tactical signal, effectively performing two functions per single clock cycle (I.E. DDR Frequency = 2 x External Clock Speed). That is why it’s referred as Double Data Rate RAM. The discussion of RAM applies equally DDR, DDR2, and DDR3. There are a variety of ways this is displayed in the BIOS: some display the DDR Frequency and other show it as a ratio of the CPU: RAM, which will be discussed below.

5) Dividers – The ratio of CPU: RAM is known as a Divider. On older Intel Systems, best performance is achieved through the highest possible stable operation in synchronous (1:1) CPU: RAM operation. On such systems, the higher the FSB, the better performance. Newer Intel Systems can benefit from aDdivider that favors the RAM (E.G. 3:4 which means the RAM runs at 4/3 the External Clock Speed – the CPU always operate at the External Clock Speed). It is generally best to start with a 1:1 divider and then test other Dividers for potentially greater performance.

6) Multipliers – The Multiplier is the ratio of External Clock Speed to Processor Frequency (I.E. External Clock Speed x Multiplier = Processor Frequency. Older Intel CPUs had a locked Multiplier, most current Intel CPUs have a Multiplier that can be adjusted downward, and most Extreme Edition CPUs have Multipliers that can be both lowered and raised. CPUs tend to have a maximum frequency, which can be achieved through whatever combinations of External Clock Speed and Multiplier that are available (E.G. if a CPU can handle 3.6 GHz, it can do so equally at 400 x 9, 450 x 8, and 600 x 6). Manipulating the Multiplier permits fine-tuning of CPU settings in relation to the RAM and Motherboard settings.

7) RAM Timings – All RAM has a series of latencies, generally referred to as timings. Smaller numbers are faster or “tighter” while larger numbers are slower or “looser”. As RAM is overclocked, it is necessary to apply looser timings, and conversely, RAM can often be run at tighter timings by either running it below stock speed or by increasing the voltage.

8) Voltages – Different components of system receive different amount of voltage, and it is generally necessary to increase voltages as frequencies are increased beyond stock speeds. The three most commonly tweaked are Core Voltage (CPU Voltage), Dimm Voltage (RAM Voltage), and MCH Voltage (Northbridge/Memory Controller). Excessive voltage can shorten the life component or cause failure.

9) Temperatures and Cooling – Quality cooling is essential to achieving and maintaining a good overclock. The temperature of various components should be monitored to ensure that they are being sufficiently cooled. CPU Cooling receives the most attention. The stock cooler that comes with most retail CPUs is generally not suitable for overclocking. There are a wide variety of aftermarket air coolers that provide a correspondingly wide degree of cooling. Water-Cooling is a popular, though more expensive, way of cooling components (Generally limited the CPUs and Video Cards, though there are water blocks available for many of components). Extreme cooling options such as phase change are also available. In general, the cooler the component, the further it will overclock. Installing an aftermarket cooling on the Northbridge is common for moderate to high overclocks. There are also aftermarket coolers for Southbridge and RAM, though those components do not often require additional cooling in most systems or sufficient additional cooling can be provided by placing a fan to blow across the component.

10) Steppings, Batches, and Weeks – Intel occasionally make a large update to a processor line, and it shows as a new stepping. Processors can often be identified by batches or weeks as well. This information can often be used to give general prediction of overclocking potential, though it is not a guarantee. There are good overclocking processors that come out of “bad” weeks/batches and poor overclockeres that come out of good ones. The odd of getting a good overclocker from a “good” week/batch is simply greater than from a “bad” one.

11) CMOS Jumper – Unstable overclocking settings can cause a system to freeze
and/or not boot. Should rebooting not reset the system, manipulating the CMOS jumper can restore stock settings. Some Motherboards have a CMOS reset button, and some have BIOS features to automatically prevent lock ups due to unstable overclocking settings.

BIOS

Pressing the DEL key at system startup can access the BIOS on most boards. It is safe to browse through the BIOS options, and it is important to be familiar with the various options. BIOS options and terminology will vary from Motherboard to Motherboard, though the same basic options are available on all boards that can be overclocked (Along with a host of advanced options).

BIOS menus are navigated with a keyboard. The Arrows and Enter Keys are used to browse the select menus and options. The ESC key accesses higher level menus, and when hit from the main menu, it will exit the BIOS (First prompting if the user wants to abandon changes and exit). The F10 key generally prompts the user to save changes and exit.

Before tweaking settings that directly affect overclocking there are some standard settings that affect stability that should be set. They may not appear exactly as listed, but it will be something similar.
  • Spread Spectrum = Disabled
  • PCI/AGP/PCIe = Fixed, locked, or 33/66/100 (It is essential to lock the PCI and AGP frequencies, though some systems may benefit from a slightly raised PCIe frequency)
  • Stop unused PCI clock = Enabled
  • Legacy USB = Disabled
Furthermore, ensure that the Initial Display Adapter is set accordingly (I.E. PCI, AGP, or PCIe, depending on the Video Card’s interface). It is also a good idea to disable any unused features (E.G. Serial Port, Parallel Port, Onboard Audio, Etc.) as this will free up resources.
Finally, any option relating to CPU Frequency, RAM Frequency, RAM Timings, or Voltages should generally be set to manual.
Overclocking Process

As stated above, overclocking is an art. Juggling the various settings can seem overwhelming initially, and it’s often difficult to fight the urge to raise an overclock quickly. It is very important to be patient and take baby steps while making adjustments.
In general, the overclocking procedure is –
  1. Increase the external clock speed by a small amount.
  2. Exit BIOS and boot to operating system.
  3. Test for stability and monitor temperatures.
  4. Return to BIOS, tweak settings, and repeat process.

In greater detail –
1) Baby Steps - Increase the External Clock Speed in small increments. "Small" is relative to the stock speed of the system, though 3-5 MHz is common for Pentiums while 5-10 MHz is common for newer CPUs. These numbers can be responsibly tweaked for a variety of reasons including personal experience and knowledge that a particular CPU stepping/week/batch is a good/bad overclocker. The steps can also be larger early in the overclocking process and smaller as the system gets closer to its limits. The important thing is to not take too large of a step as too many other variables can change if large jumps are made.

2) Boot Up - Be sure to save your settings before rebooting. Some motherboards offer overclocking profiles, which can save settings after a CMOS reset or even a BIOS flash. Unsuccessful boots are not uncommon. Either return to step 1 and lower the External Clock Speed or jump to Step 4 for other tweaks.

3) Stability Testing - There are a variety of stability testing programs available, and they should be employed frequently during the course of overclocking. The extent of stability testing is up to individual preference, and there are a wide variety of philosophies concerning testing. It is generally a good idea to do at least a brief test at every step with a more thorough test every few steps. Some quality testing programs are -
  • Super Pi - Good for quick tests and benchmarking. This program will not provide robust stability testing.
  • Prime95 and Orthos - These programs provide thorough testing, and some versions work automatically on multiple core processors.
  • OCCT - Another thorough stress testing program.
  • Memtest86 - An excellent RAM testing program. Great for ruling out or identifying the RAM settings as an issue.
A brief test with one of these programs might be for several minutes to an hour with a thorough test ranging from several hours to a full day. Be sure to monitor temperatures when stress testing.

4) Return to BIOS and Tweak - If stability testing was successful, return to step 1 and further increase the external clock speed. If the system booted but did not test stable, there are several settings that may help. They include -
  • Adjust Core Voltage - Increase the Core Voltage one notch and repeat the testing. If more than two notches are required, try adjusting another setting.
  • Adjust RAM Timings and Dimm Voltage - If a bit of Core Voltage doesn't do the trick or Memtest86 identified the RAM as the source of instability, tweak the RAM settings. Loosening RAM Timings and/or increasing Dimm Voltage may address this issue. Be aware that excessive Dimm Voltage will void most manufacturers' warranties.
  • Adjust Northbridge Voltage - Higher frequencies require additional voltage to the Northbridge. In general, this setting only goes up a few notches from stock speed to extreme overclocks. Stock Northbridge coolers may not be able to handle additional voltage, so it may be necessary to invest in aftermarket cooling.
Maximizing the Overclock on a System

One way to simplify overclocking is to initially take the RAM out of the equation. Select a Divider such that the RAM does not exceed stock speeds; this permits attention to be focused on the CPU and Motherboard. Once the maximum overclock of those two components is found, manipulate the Divider to determine the optimal frequency for the RAM. Be sure to use Memtest86 to test RAM stability. A few complete passes with that software is generally a good indication of stability.

Manipulating the CPU Multiplier can lead to better performance on systems that support that feature. First, find the maximum CPU Frequency as described above with the stock Multiplier. Then, determine other combinations of External Clock Speed and Multiplier that equate to the same CPU Frequency. Using the example from item number 6, above, that CPU could equally handle 400x9 and 450x8. If the RAM and Motherboard could safely handle the higher frequencies, the lower Multiplier would most likely produce the best performance. Trial and error plays into this equation as well, due to the complexities of modern systems. It is important to benchmark a system with appropriate applications (e.g. using gaming benchmarks for a gaming system, productivity benchmarks for an office system, etc.) to see which combination of settings provide the best performance. Remember that each set of components is unique, and that the goal of overclocking is performance not any specified settings
XXXUnknownXXX
(13 items)
 
  
CPUMotherboardGraphicsRAM
Intel Core 2 Duo E8400 Wolfdale 4.1 GHz DFI Lanparty DK P35 T2RS 2 x eVGA 8800 GTS GDDR3 512 MB in Nvidia SLI 2 x 2 GB OCZ Reaper HPC Edition DDR2 800 PC2-6400 
Hard DriveOptical DriveOSMonitor
4 x 150 GB Raptors (X) 10,000 RPM in Raid 0 + 1 Lite-On Black SATA Blu-Ray DVD ROM DH-4O1S-08 XP Professional 64-Bit/Vista Ultimate 64-Bit Acer Black 22" Widescreen LCD WSXGA (1680 x 1050) 
KeyboardPowerCaseMouse
Logitech G15 Gaming Keyboard Silverstone DA-1200-Watts Nvidia SLI Certified Cooler Master CM Stacker 830 Black ATX Full Tower Razer Diamondback Blue Gaming Mouse 
Mouse Pad
QPAD CT Black Gaming Mouse Pad 
  hide details  
Reply
XXXUnknownXXX
(13 items)
 
  
CPUMotherboardGraphicsRAM
Intel Core 2 Duo E8400 Wolfdale 4.1 GHz DFI Lanparty DK P35 T2RS 2 x eVGA 8800 GTS GDDR3 512 MB in Nvidia SLI 2 x 2 GB OCZ Reaper HPC Edition DDR2 800 PC2-6400 
Hard DriveOptical DriveOSMonitor
4 x 150 GB Raptors (X) 10,000 RPM in Raid 0 + 1 Lite-On Black SATA Blu-Ray DVD ROM DH-4O1S-08 XP Professional 64-Bit/Vista Ultimate 64-Bit Acer Black 22" Widescreen LCD WSXGA (1680 x 1050) 
KeyboardPowerCaseMouse
Logitech G15 Gaming Keyboard Silverstone DA-1200-Watts Nvidia SLI Certified Cooler Master CM Stacker 830 Black ATX Full Tower Razer Diamondback Blue Gaming Mouse 
Mouse Pad
QPAD CT Black Gaming Mouse Pad 
  hide details  
Reply
post #35 of 36
555thz,

could you post some pic's of your rig? what a nice set-up that is!!!

to the OP,

what you have done so far is good, just increase your vcore and then move the fsb up in small increments and run your stress tests for a few minutes watching your temps, keep going until you aren't stable, then back it down to the last stable setting you had.
Easy V3
(17 items)
 
12 Pack
(15 items)
 
 
CPUMotherboardGraphicsRAM
i7-4820k Asus Rampage IV BE evga 1080ti FE w/ hybrid kit 16 GB G.Skill Trident X 2400mhz  
Hard DriveHard DriveOptical DriveCooling
Samsung 840 EVO 120gb Samsung 840 EVO 1TB Samsung Blu-ray Corsair H110 
OSMonitorKeyboardPower
windows 10 Asus PG278Q Ducky Shine 3 - blue led - cherry mx browns Seasonic Platinum-1000 
CaseMouseMouse PadAudio
Dimastech Easy V3 Mionix NAOS 8200 Mionix Ensis 320 titanium HD  
Other
audio technica ATH-A900X 
  hide details  
Reply
Easy V3
(17 items)
 
12 Pack
(15 items)
 
 
CPUMotherboardGraphicsRAM
i7-4820k Asus Rampage IV BE evga 1080ti FE w/ hybrid kit 16 GB G.Skill Trident X 2400mhz  
Hard DriveHard DriveOptical DriveCooling
Samsung 840 EVO 120gb Samsung 840 EVO 1TB Samsung Blu-ray Corsair H110 
OSMonitorKeyboardPower
windows 10 Asus PG278Q Ducky Shine 3 - blue led - cherry mx browns Seasonic Platinum-1000 
CaseMouseMouse PadAudio
Dimastech Easy V3 Mionix NAOS 8200 Mionix Ensis 320 titanium HD  
Other
audio technica ATH-A900X 
  hide details  
Reply
post #36 of 36
personally i would bump the vcore to 1.35 and the ram voltage to 1.95. of course that's just based on my knowledge and experience with AMD. I don't know if intel chips respond the same.
New Posts  All Forums:Forum Nav:
  Return Home
  Back to Forum: AMD Motherboards
Overclock.net › Forums › AMD › AMD Motherboards › Problems after overclock